Conecta con nosotros

Noticias

ASUS Tinker Edge R, un equipo diminuto preparado para inferencia e inteligencia artificial

Publicado el

El ASUS Tinker Edge R un equipo con un tamaño mínimo que, a pesar de ser extremadamente pequeño, está preparado para trabajar con cargas de inferencia, aprendizaje profundo e inteligencia artificial, gracias a su acertada configuración de hardware, que cuenta con componentes especializados de pequeño tamaño.

La base del ASUS Tinker Edge R es una NPU (unidad de procesamiento neural) Rockchip RK3399Pro, que está apoyada por un acelerador de aprendizaje automático que ayuda a mejorar la eficiencia al mover este tipo de cargas de trabajo, reduce el consumo energético y permite un diseño compacto y altamente eficiente.

MCPRO Recomienda

Transformación Digital en España ¡Participa y envíanos tu caso de éxito!
Tendencias de inversión TIC en 2021 ¡Descárgate el informe!

Gracias al acelerador integrado el ASUS Tinker Edge R es capaz de alcanzar los 3 TOPs de potencia, y con un consumo mínimo. También cuenta con una arquitectura de red neuronal optimizada, lo que le permite trabajar con múltiples marcos de aprendizaje automatizado y facilitar y simplificar tanto la compilación como la ejecución de estos.

Para que la alimentación no sea un problema el Tinker Edge R tiene un diseño especial que, junto con una entrada de conector de CC y un encabezado de 4 pines, ofrece hasta 65 vatios de potencia, lo que permite un funcionamiento estable del sistema y un rendimiento óptimo en todo momento, incluso con múltiples dispositivos conectados. A esto debemos unir, además, su diseño exclusivo de protección de energía, que se activa automáticamente si la corriente y el voltaje suministrados cambian significativamente, protegiendo efectivamente la placa y todos los dispositivos conectados.

El Rockchip RK3399Pro monta también una CPU con seis núcleos divididos en dos bloques, uno de dos núcleos Cortex-A72 de alto rendimiento y otro dividido en cuatro núcleos Cortex-A53 de alta eficiencia. Esto le permite ofrecer un rendimiento escalable, eficiente y adaptado a las necesidades concretas de cada carga de trabajo.

ASUS ha acompañado a este equipo de 4 GB de memoria LPDDR4 en una configuración de doble canal para maximizar el ancho de banda, ha integrado 2 GB de memoria dedicada en exclusiva a la NPU, lo que contribuye a acelerar las cargas de trabajo y mejora el rendimiento en inferencia y aprendizaje profundo. Su capacidad de almacenamiento es de 16 GB de eMMC, ampliables mediante una tarjeta microSD.

El ASUS Tinker Edge R tiene también un buen soporte a nivel de software. ASUS proporciona una API y un SDK bien terminados y muy sólidos que facilitan la implementación de modelos de aprendizaje automatizado centrados en aplicaciones muy variadas, como la clasificación de imágenes y la detección de objetos. También es compatible con la conversión de modelos de Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet y otros.

Editor de la publicación on-line líder en audiencia dentro de la información tecnológica para profesionales. Al día de todas las tecnologías que pueden marcar tendencia en la industria.

Lo más leído

Suscríbete gratis a MCPRO

La mejor información sobre tecnología para profesionales IT en su correo electrónico cada semana. Recibe gratis nuestra newsletter con actualidad, especiales, la opinión de los mejores expertos y mucho más.

¡Suscripción completada con éxito!