Conecta con nosotros

Noticias

Telefónica desarrollará los nuevos dispositivos de vigilancia sobre violencia de género

Publicado el

La tecnología puede ayudar a combatir una de las lacras de nuestra sociedad, la violencia de género, y Telefónica será la encargada de hacerlo realidad desarrollando el sistema que monitorize el cumplimiento de las órdenes de alejamiento. Para ello, el Ministerio de Sanidad abonará un contrato por valor de 15,5 millones de euros.

Según se recogía en el pliego de licitación publicado en el BOE, la empresa ganadora del concurso debe desarrolla un sistema de seguimiento por medios telemáticos que garantice el cumplimiento de las medidas cautelares y las penas de prohibición de aproximación en materia de violencia de género. Así, Telefono debe desarrollar dispositivos capaces de realizar el seguimiento de posición en tiempo real en todo el territorio español, proporcionando esta información a las autoridades competentes.

Además, es necesario que la solución analice la distancia a la que se encuentran víctima e investigado, encausado o condenado así como garantizar la seguridad del dispositivo en todo momento, evitando cualquier intento de modificación o fraude en su funcionamiento. Será necesario incluir también un sistema que preavise cuando el investigado esté próximo a rebasar la distancia de alejamiento fijada por la autoridad judicial previamente.

Para comunicar esta información en tiempo real será necesario utilizar la red disponible, tanto la red conmutada o los sistemas de telefonía móviles disponibles o que se pudieran desarrollar en el futuro, como el 5G. Un centro de control gestionado por Telefónica y disponible las 24 horas, todos los días del año, será el encargado de gestionar este sistema.

Finalmente, y dado el caracter personal del dispositivo, también se considera importante que sea fácil de instalar y de mantener, que sea resistente al agua y que sea hipoalergénico si, como parece probable, va a estar en contacto con la piel. Se puede acceder a todos los detalles sobre la adjudicación en este documento (PDF).

La adjudicación fue concedida el pasado 27 de julio por un importe total de 15.588.611,58 euros (impuestos incluidos). El adjudicatario es una U.T.E. formada por Telefonica de España, S.A.U. y Telefónica Soluciones de Informática y Comunicaciones de España, S.A.U.

Vía | Adjudicaciones TIC

Me encargo de traer innovación y nuevo negocio al grupo TPNET. Además colaboro en varios de nuestros sitios como MC y MCPRO.

Noticias

Lenovo crece un 19% gracias a su unidad de PCs

Publicado el

Los ingresos de Lenovo han crecido un 19% en el trimestre finalizado el 30 de Junio (que para la compañía es el primer trimestre del año fiscal) contabilizado de forma anualizada. Lenovo crece, y crece mucho. Tal y como señala Yang Yuanqing, Chairman y CEO de Lenovo, “a medida que ponemos en práctica nuestra estrategia 3-Wave, todas las unidades de negocio han dado pasos firmes en la mejora de ingresos y de beneficios”.

Continuar leyendo

Noticias

TransmogrifAI el Machine Learning de Salesforce llega a GitHub

Publicado el

Los modelos de Machine Learning, la Inteligencia Artificial que identifica relaciones entre millones de datos, rara vez son fáciles de diseñar. Los científicos de datos pasan semanas y meses no solamente procesando los datos en los que se basa cada uno de los modelos, si no que también tienen que extraer características útiles de los datos, estrechando algoritmos y al final construyen, o lo intentan, un sistema que no solo funcione bien en el laboratorio, que también lo haga en el mundo real.

Las nuevas herramientas de Salesforce tienen como objetivo intentar aliviar esta carga de trabajo. Salesforce ha publicado en GitHub TransmogrifAI, una biblioteca de Machine Learning para datos estructurados. Este tipo de datos, que se encuentra en tablas y bases de datos, permitirá seleccionar características útiles y modelos de entrenamiento con tan solo tres líneas de código.

Mayukh Bhaowal, director de Salesforce Einstein, comentó en una entrevista telefónica con VentureBeat que TransmogrifAI transforma conjuntos de datos sin procesar en modelos personalizados. Es la evolución de la biblioteca de Machine Learning de Salesforce, que permitió al equipo de Einstein desarrollar en cuestión de horas un modelo personalizado para sus clientes.

Bhaowal explicó que se creó con la experiencia y el aprendizaje que los científicos de datos de Salesforce consiguieron al crear Einstein. Ellos aprendieron que los modelos personalizados superan a los modelos generados a nivel global. “Si se usa el mismo modelo para hacer predicciones para una empresa de Fortune 500 en una tienda familiar, será difícil encontrar un patrón correcto“.

Lo primero es la inferencia de características y la selección automática de características. Es una parte crucial de la capacitación del modelo, ya que la selección de unas características incorrectas podría resultar en un modelo excesivamente optimista, inexacto o sesgado.

Con TransmogrifAI, los usuarios especifican un esquema para sus datos, la biblioteca extrae funciones automáticamente, como números de teléfono o códigos postales. También realizan pruebas estadísticas, catalogando texto con baja cardinalidad, es decir, una pequeña cantidad de elementos, y elimina características con poco poder predictivo, o aquellas que pueden dar lugar a un sesgo no predictivo, otras señales no deseadas.

En una demo, Bhaowal demostró como TransmogrifAI podía aislar rápidamente características como puestos de trabajo, correos electrónicos, direcciones… y de esta forma averiguaba si son predictivas. Los que no lo son fueron descartados automáticamente. “Es perfecto para la reducción de la dimensionalidad“, dijo refiriéndose al proceso de reducción del número de funciones con respecto a la que el modelo se creó.

El siguiente paso es automatizar el flujo de TransmorgrifAI. Basándose en los tipos de características extraídos en el primer paso, la biblioteca transforma los datos estructurados en vectores, tomando automáticamente, por ejemplo, números de teléfono y separando el código del país para saber si es válido o no.

Una vez que TransmogrifAI ha extraído las características del conjunto de datos, estará listo para comenzar la capacitación de modelos automatizados. En esta etapa se ejecutan un cuadro de algoritmos de aprendizaje automático. En paralelo, sobre los datos, se selecciona automáticamente el modelo de mejor rendimiento, se toman muestras y se recalibran las predicciones para evitar datos desequilibrados.

Shubha Nabar, Director Senior de Data Science para Salesforce Einstein, define el entrenamiento de TransmogrifAI como la “explicación del modelo”, la transparencia sobre los factores que influyen en los modelos. “Desde una perspectiva de confianza y privacidad de los datos, es importante que el modelo generado no sea una caja negra. TransmogrifAI muestra los efectos globales de cada característica”.

Y esta es solo la punta de un iceberg muy grande

TransmogrifAI cuenta con herramientas que facilitan ajustar los hiperparámetros, variables como la frecuencia de muestreo y filtros, que influyen y optimizan los modelos de Machine Learning. Dentro de los entornos de desarrollo integrados que lo soportan, TransmogrifAI resalta los errores de sintaxis y tipográficos, sugiere como completar el código y las característica de cada “tipo” con una jerarquía extensible, lo que permite a los usuarios diferenciar entre funciones primitivas y matizadas.

TransmogrifAI nos ha transformado, reduciendo el tiempo medio de respuesta en el que se entrena un modelo de rendimiento en un par de horas y permitiendo a nuestros científicos de datos desplegar miles de modelos de producción con un mínimo ajuste manual” dijo Bhaowal. “El objetivo de democratizar el machine learning solo se puede lograr en una plataforma abierta de intercambio de ideas y códigos, y las diversas perspectivas de la comunidad harán que la tecnología sea mejor para todos“.

Casualmente, el lanzamiento público de TransmogrifAI  se produce un día después de la plataforma abierta de Oracle, GraphPipe, una herramienta que facilita el desplieuge de modelo de machine learning hechos para frameworks como Google TensorFlow, MXNet, Facebook Caffe2 y PyTorch.

Photo por Curtis MacNewton en Unsplash

Continuar leyendo

Noticias

Un niño de 11 años hackea una réplica de la web electoral de Florida

Publicado el

Emmett Brewer

Emmett Brewer, un niño americano de 11 años, ha logrado piratear una réplica de la web de resultados electorales de Florida en tan solo 10 minuto, logrando cambiar nombres y cifras. Esta hazaña tuvo lugar durante una convención de seguridad en la que los organizadores pretendían concienciar sobre el tema antes de las próximas elecciones nacionales.

Al acto acudieron un total de 35 niños, de entre 6 y 17 años, a quienes retaron para piratear las copias de las webs de seis estados norteamericanos indecisos con su voto. Brewer fue el más rápido de todos. El evento estaba pensado para evaluar la fortaleza de la infraestructura electoral del país y las vulnerabilidades encontradas se transmitieron a los estados.

La Asociación Nacional de Secretarios de Estado, responsables del recuento de votos, indicaron que recibieron con “satisfacción” los esfuerzos de los organizadores de la convención pero que los sistemas reales utilizados por los estados tenían protección adicional. “Sería extremadamente difícil replicar estos sistemas, ya que muchos estados utilizan redes únicas y bases de datos personalizados con nuevos y actualizados protocolos de seguridad”, afirmaron.

Lo cierto es que existe preocupación sobre las vulnerabilidades que pudieran atacar al sistema electoral antes de las elecciones estatales y federales, de ahí que pidieran comprobar la seguridad del mismo. De hecho, el equipo de seguridad nacional del presidente, Donald Trump, advirtió hace dos semanas que Rusia había estado intentando interferir en las elecciones de noviembre.

Los responsables del evento dijeron que los pequeños hackers  habían logrado cambiar los nombres de los partidos y dado hasta 12.000 millones de votos a los candidatos.

Continuar leyendo




Lo más leído

Suscríbete gratis a MCPRO

La mejor información sobre tecnología para profesionales IT en su correo electrónico cada semana. Recibe gratis nuestra newsletter con actualidad, especiales, la opinión de los mejores expertos y mucho más.

¡Suscripción completada con éxito!